Target-Independent Domain Adaptation for WBC Classification Using Generative Latent Search
نویسندگان
چکیده
منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملRanking Adaptation Svm for Target Domain Search
With the growth of different search engines, it becomes difficult for an user to search particular information effectively. If a search engine could provide domain specific information such as that confines only to a particular topicality, it is referred to as domain specific engine. Applying the ranking model trained for broad-based search to a domain specific search does not achieve good perf...
متن کاملEEG classification using generative independent component analysis
We present an application of independent component analysis (ICA) to the discrimination of mental tasks for EEG-based brain computer interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for direct discrimination of different types of EEG signals. By viewing ICA as a generative model, we can use Bayes’ rule to form a classifier. We ...
متن کاملgenerative independent component analysis for EEG classification
We present an application of Independent Component Analysis (ICA) to the discrimination of mental tasks for EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for direct discrimination of different types of EEG signals. By viewing ICA as a generative model, we can use Bayes’ rule to form a classifier. Thi...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2020
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2020.3009029